PHYSICAL REVIEW B VOLUME 62, NUMBER 1 1 JULY 2000-I

Meissner-London state in superconductors of rectangular cross section
in a perpendicular magnetic field
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The Meissner state with finite London penetration depth is analyzed for platelet samples of rectangular cross
section in a perpendicular magnetic field. The exact two-dimensional numerical solution of the London equa-
tion is extended analytically to the realistic three dimensional case. Data obtained on Nb cylinders and foils, as
well as single crystals of Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O, are in a good agreement with the model. The results
are particularly relevant for magnetic susceptibility, rf, and microwave resonator measurements of the magnetic
penetration depth in high; superconductors.

The temperature and field dependencies of the magnetiormula that can be used to interpret frequency-shift data
penetration depth yield basic information about the micro-obtained from rf and microwave resonator experiments, as
scopic pairing state of a superconduct@ince most highF,  well as sensitive magnetic susceptibility measurements.
superconductors are highly anisotropic, a measurement in Consider an isotropic superconducting slab of width 2
which the probe magnetic field lies at an arbitrary angle relain the x direction, thickness @ in they direction, and infinite
tive to the conducting planes yields a Meissner response arisa the z direction. A uniform magnetic fieldd, is applied
ing from both in-plane and interplane supercurrents. The coralong they direction. In this two-dimensional2D) geom-
responding penetration depthg, and . can differ widely  etry, the vector potential i8={0,0A}, so that the magnetic
in their magnitude and temperature dependence, and it ield has only two componentd ={3JA/dy,— dAlx,0} and
desirable to separate the two contributions to the total signathe London equation takes the fotsA— X\ ~2A=0. Outside
To study\,,, one must resort to a configuration in which the sample,AA=—4sxj/c=0, and dA/dn is continuous
the applied field is normal to the conducting planes so as talong the sample boundary. Herds the direction normal to
generate only in-plane supercurrents. Except in special casefe sample surface. A numerical solution of this equation
the London equations in this geometry cannot be solved anavas obtained using the finite-element method on a triangular
lytically, making it difficult to reliably relate the experimen- adaptive mesh using a Gauss-Newton iterations scheme. The
tal responsdtypically a frequency shift or change in mag- boundary conditions were chosen to obtain constant mag-
netic susceptibility to changes in\,,. Exact analytical netic field far from the sample, i.eA(x,y)=—Hgx for y
solutions are known only for special geometries: an infinites>>d andx>w.
bar or cylinder in longitudinal field, a cylinder in perpendicu-  Figure 1 presents the distribution of the magnetic field in
lar field, a sphere, or a thin filhThese solutions are not and around the sample withv/d=5 and A/d=0.5. The
practical since most higfiz superconducting crystals are black color on a gray scale image correspond®te-0. The
thin platelets with aspect ratios typically ranging from 1 toleft half of the sample shows contour lines of the vector
30. Brandt developed a general numerical method to calcuypotential. Figure 2 shows profiles of tigecomponent of the
late magnetic susceptibility for plates and didkisut this  magnetic field at different distances from the sample
method is somewhat difficult to apply in practice. middle plane.

In this paper, we describe the numerical solution of the The inset shows the corresponding profiles of the vector
London equations in two dimensions for long slabs in a perpotential, normalized by its valua®(x=w) in the absence
pendicular field. The results are then extended analytically tef a sample(a uniform-field curveA°=x is shown by the
three dimensions. We first compare our calculations in thejotted ling. Using the London relation #\?j=—cA and
limit of A =0 with superconducting quantum interference de-the definition of the magnetic momentl=(2c) *fr
vice (SQUID) measurements on cylindrical Nb samples of xjd®r, we calculate numerically the susceptibility per unit
differing aspect ratid.We then compare our calculations for volume (unit of surface cross section in a 2D case
finite A with data from Nb foils and platelets of both Bi-Sr-

Ca-Cu-O(BSCCQ and Y-Ba-Cu-O(YBCO) high-T, super- 1 d w
conductors, obtained by using an rf LC resonatafsing Ay = > f dyf A(X,y)xdx. Q)
numerical results and analytical approximations, we derive a dwk“HgJo 0
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FIG. 3. Distribution of the in-planéi, component of the mag-
FIG. 1. Right half: gray scale image of the magnetic field in andnetic field on the sample surfage=d. Symbols show result of
around the sample af/w=1/5 and\/d=0.5. Black color repre-  nymerical calculation, and solid lines are the fits to E).
sentsB=0. Left half: contour lines of the vector potentigDrigin,
(x=0y=0) is at the sample centér.
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Next, we find a simple analytical approximation to the
exact numerical results by calculating the ratio of the volume
It is easy to check that for an infinite slab of widttw2n  penetrated by the magnetic field to the total sample volume.
parallel field, whereA= —\Hg sinh/\)/cosh@/N), Eq. (1) This procedure automatically takes into account demagneti-
results in a known expression similar to Eg) below (with  zation and nonuniform distribution of the magnetic field
N=0 andR=w). In finite geometry, there will be a contri- along sample top and bottom faces. The exact calculation
bution to the total susceptibility from the currents flowing on requires knowledge of\(x,y) inside the sample oH(x,y)

top and bottom surfaces. These currents are due to shielding a screened volume outside, proportionaMta The pen-
of the in-plane component of the magnetic field, etrated volume is

=¢Al 9y, appearing due to demagnetization. Figure 3 shows

profiles ofH, on the sample surface, gt=d, calculated for AHy
three different samplesy/d=8, 5, and 2.5. The choice of V,= %H_
N d=0.05 was to achieve best screening in our numerical s o
scheme. Similar results are obtained for larger ratios. ARynere integration is conducted over the sample surface in a
analytical form for the surface magnetic field is known only 3p ¢ase or sample cross-section perimeter in a 2D case. Us-

for elliptical samples. We find, however, that it can bejyg gq.(2) for magnetic field on the top and bottom surfaces
mapped onto the flat surface, so that the distributionlpfs 5 assumingds=H,/(1—N) on the sides we obtain

ds, 3

given by
Ay = 1 At R 4
Hor TXZ1eNy T REMY @
Hx:\/ﬁa )
ar—r HereN is an effective demagnetization factor, aRds the

effective dimension. Both depend on the dimensionality of

_ 2_ 2 Thi On e cimi
wherer=x/w anda®= 1+ (2d/w)*. This equation is similar - {he problem. As mentioned earlier, E@) is similar to the

to that obtained for an ideal Meissner screerﬁ'ﬁgSoIid. well-known solution for the infinite slab of widthv2 in par-
lines in Fig. 3 are the fits to E¢2) whereawas used as afit | field. In that caseR=w and the effective demagnetiz-
parameter. It agreed with the above analytical estimate tfhg factorN=0. In a 3D case (& 2w slab, infinite in the

within 10% being better for larger aspect ratiod. z direction, R=w/2 andN=0. The tanhR/\) term in Eq.
(4) was inserted to ensure a correct limith\atscc. This cor-
3 _ T y rection becomes relevant atR=0.4, which is realized only

at T/T.=0.9 for typical highT, samples.

For the actual geometry studied here, b&tand N de-
pend upon the aspect ratie'd. Unlike the case of an ellip-
tical cross section, the magnetic field is not constant within
the sample, so there is no true demagnetizing factor for a
slab. HoweverN can still be defined in the limit ok—0,
through the relation, 4M/V¢s=—H/(1—N). We find nu-
merically that in a 2D case, for not too large an aspect ratio
w/d, 1/(1-N)~1+w/d. Calculating the expelled volume
as described above, the effective dimendiis given by

w
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FIG. 2. Profiles of they component of the magnetic fielgar- 2D

allel to the external fieldfor the sample shown in Fig. 1. Inset:
corresponding profiles of the vector potential. In the thin limit, d<w (a—1), we obtainR,5~0.39W.
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FIG. 4. Calculated-4mx(\) for a slab ofw/d=5. Solid line is FIG. 5. Linear magnetic susceptibility of Nb cylinders of differ-

a fit to Eq.(4) with the effective dimensioR/w=0.36. Dotted line  ent aspect ratio measured &=8 K. Solid line is a plot of 1
is calculated usingr/w=0.39 from Eq.(5), and a dashed line isa 4 y/24.
plot with R/'w=1. Inset: —4my(A—0) calculated for samples of

different aspect ratio. Solid line is-iw/d. To test our result foR [Eq. (6)] in actual samples, we
need the magnetic penetration depth. It is common to mea-

The natural extension of this approach for the 3D disk ofsure changes in the penetration depth by using the frequency
radiusw and thickness @ leads to 1/(+N)~1+w/2d and  shift of a microwave cavity or an LC resonator. In these

techniques, the relative frequency shift(f,)/fy due to a

W superconducting sample is proportionalHo /M .- HdV,
Rsp= q12 W >d] (6)  which in turn is proportional to the sample linear magnetic
2141+ == arctar( _) - _] susceptibility M, is the ac component of the total magnetic
2d w moment,H is the external magnetic field, arfig is the reso-

o ) ) nance frequency in the absence of a samplsing Eq.(4)
In a thin limit, Ryp~0.2w. Equation(6) was derived for a anqg Eq.(6), we obtain for\<R:

disk, but the more experimentally relevant geometry is a
rectangular slab. There is no analytical solution for the slab. Af Ve A
However,a?=1+ (2d/w)? is relatively insensitive tav in 1= m( -z
the thin limit and so we approximate for a slab by the 0 0
geometric mean of its two lateral dimensions. The validity ofwhereV, is the sample volumeé/, is the effective coil vol-
this approach will be determined shortly. ume. The apparatus and sample-dependent constégt
To verify Egs.(4) and (5) we calculatedy(\) numeri- =V f,/[2Vo(1—N)] is measured directly removing the
cally. The result is shown in Fig. 4 by symbols. The solid sample from the coil. Thus, the changeNrwith respect to
line is a fit to Eq.(4) with N=0.86 andR/w=0.36. The its value at low temperature is
effective dimension calculated using E¢(p) gives R/w
=0.39, and the corresponding susceptibility curve is shown R
as a dotted line. The calculated effective demagnetization m‘:_&cA_fO' ®)
factor isN=0.84. It is seen that our approximations are rea-
sonably good. It should be borne in mind that these are alvhere AN=N(T) —\(Tyin) and sf=AF(T) = Af(Tpin)-
2D results—the sample extends to infinity in thdirection. We used an rf tunnel-diode resonatte measuresf in
Demagnetizing effects are significantly larger in two dimen-Nd foils, YBCO, and BSCCO single crystals. Combiniafy
sions than in three owing to the much slower decay of fieldsvith an independent measurementdot(T) and a measured
as we move away from the sampleompare 3D spheréy  value for Af,, we then arrived at an experimental determi-
=1/3, and cylinder in perpendicular fieltd=1/2). There- nation of the effective dimensioR. For the Nb and YBCO
fore, we expect our approximations to be more accurate isamples,AX(T) was obtained using the demagnetization-
three dimensions. free orientatior(rf magnetic field along the sampéb plane
In the 3D case, the validity of our results can be verifiedwhereR=w and 1/(1-N)=1. In BSCCO, the large anisot-
experimentally by independently measuring the demagnetiFopy prohibits using this method, and we used reported val-
zation factor as a function of the aspect ratio and the magues ofd\/dT=10 A/K.2 Figure 6 summarizes our experi-
netic susceptibility for a finite London penetration depth  mental results. The upper line represents the “infinite slab”
To achieve the first goal, we measured niobium cylinders ofmodel, whereR=w/2, whereas the lower solid line iR
radiusw and length 2 using a Quantum Design MPMS-5 =0.2w obtained in a thin limit of Eq(6). Symbols show the
SQUID magnetometer. Sample dimensions were typically oexperimental data obtained on different samples, indicated
the order of millimeters, which allows us to disregard Lon-on plot. In three samples, YBCOWw(d=57), Nbl (w/d
don penetration depth of N@bout 500 A. The initial sus- =29), and Nb2 {/d=15), R agrees with Eq(6) to better
ceptibility obtained from the magnetization loops @t than 5%. The standard resuit=w/2, is too large by a factor
=8 K is shown in Fig. 5. The solid line is a plot of 1 of 2.5. Both YBCO2 and BSCCO giv& roughly 20%
+w/2d (not the fi), and for an aspect ratio up t@/d=10, smaller than predicted. For the BSCCO data, it is possible
the agreement is very good. that a sample tilt combined with the very large anisotropy of
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' ' The importance of the tilt depends upon the relative

200 - 1 changes in\,, and A\, with temperature. From Ed9), we
W2 obtain for the relative contribution to the frequency shift
150 - aZ .
=3 5t(6) 2 d A\,
3. _—— =~ — —
o 100 Nb1 - o6f(6=0) 1+ 5tan2(0) 1JrW AN/’ (10

= w/b YBCO1 _ _
50_Nb2 = - | where we used the previous estimates Ndofand R. For
BSCCO we take, d\./dT=170 A/K and d\,,/dT

BSCCO
=10 A/K.2 Eq. (10) reduces to~1+tar?(6). We then find
40 150 200 tha_lt for sample tilt to produce an additional 20% frequency
w/2 (um) shift, a misalignment ob~20° would be required. Our es-

timated misalignment was a factor of 10 smaller than this, so
FIG. 6. Effective dimensiorR determined experimentally for the discrepancy between measured and prediRtes not
different samplegsymbolg. The upper solid line is an “infinite  due to tilt. Both the BSCCO and the YBCO2 samples were
slab” model R=w/2), and the lower solid line is an analytic ap- more rectangular than square, and our use of the geometric
proximationR~w/5. mean forw could be the source of the error.
In conclusion, we solved numerically the London equa-
\ produces an additional contribution froxg . If the c axis  tions for samples of a rectangular cross section in a perpen-
is tilted by an angled away from the field direction, the dicular magnetic field. We obtained approximate formulas to

frequency shift is given by estimate the finitec magnetic susceptibility of platelet
samples.
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